Continuous Renal Replacement Therapy

October 11, 2007

Gregory M. Susla, Pharm.D., F.C.C.M.
Associate Director, Medical Information
MedImmune, Inc.
Gaithersburg, MD

Definition of Terms

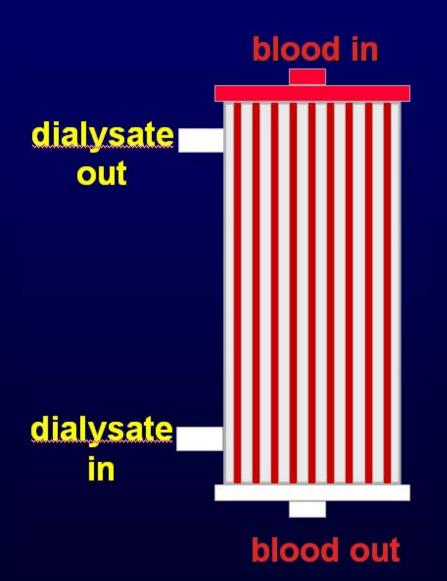
- * SCUF Slow Continuous Ultrafiltration
- * CAVH Continuous Arteriovenous Hemofiltration
- * CAVH-D Continuous Arteriovenous Hemofiltration with Dialysis
- * CVVH Continuous Venovenous Hemofiltration
- * CVVH-D Continuous Venovenous Hemofiltration with Dialysis

Indications for Continuous Renal Replacement Therapy

- * Remove excess fluid because of fluid overload
- Clinical need to administer fluid to someone who is oliguric
 - Nutrition solution
 - Antibiotics
 - Vasoactive substances
 - Blood products
 - Other parenteral medications

Advantages of Continuous Renal Replacement Therapy

- * Hemodynamic stability
 - Avoid hypotension complicating hemodialysis
 - Avoid swings in intravascular volume
- * Easy to regulate fluid volume
 - Volume removal is continuous
 - Adjust fluid removal rate on an hourly basis
- * Customize replacement solutions
- * Lack of need of specialized support staff

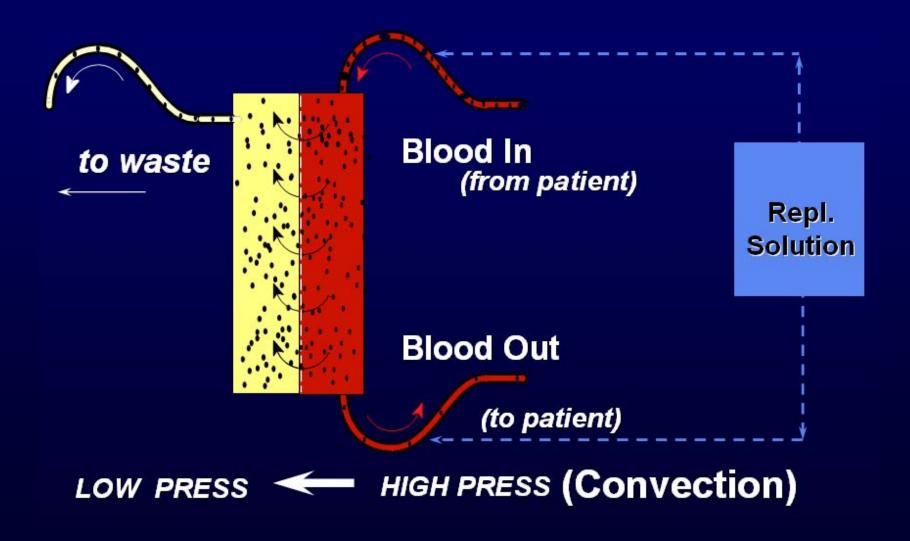

Disadvantages of Continuous Renal Replacement Therapy

- * Lack of rapid fluid and solute removal
 - GFR equivalent of 5 20 ml/min
 - Limited role in overdose setting
- * Filter clotting
 - Take down the entire system

Basic Principles

- * Blood passes down one side of a highly permeable membrane
- * Water and solute pass across the membrane
 - Solutes up to 20,000 daltons
 - * Drugs & electrolytes
- * Infuse replacement solution with physiologic concentrations of electrolytes

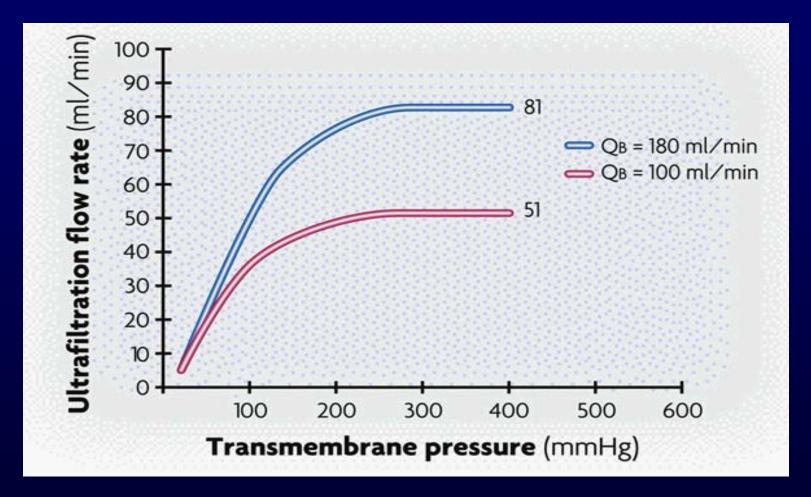
Anatomy of a Hemofilter



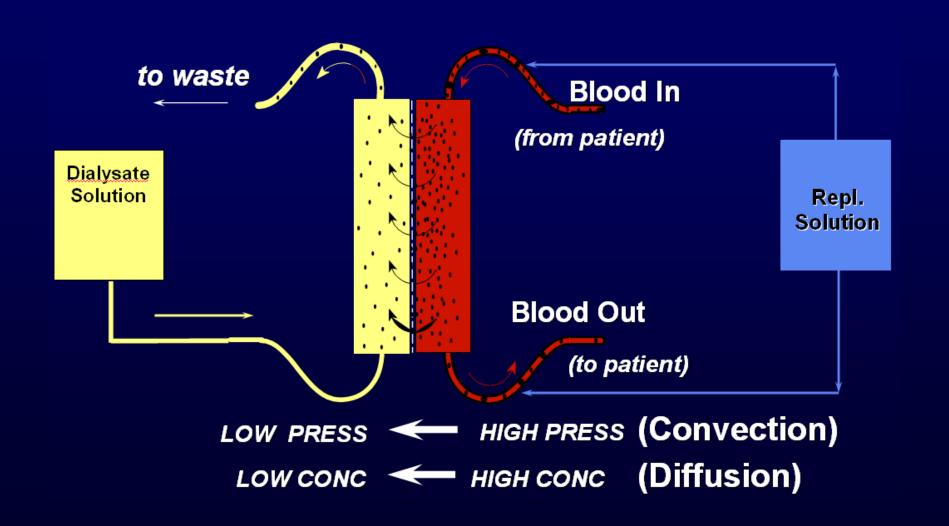
Cross Section hollow fiber membrane **Outside the Fiber** (effluent) Inside the Fiber (blood)

Basic Principles

- * Hemofiltration
 - Convection based on a pressure gradient
 - 'Transmembrane pressure gradient'
 - * Difference between plasma oncotic pressure and hydrostatic pressure
- * Dialysis
 - Diffusion based on a concentration gradient


CVVH Continuous Veno-Venous Hemofiltration

CVVH Continuous VV Hemofiltration


- * Primary therapeutic goal:
 - Convective solute removal
 - Management of intravascular volume
- * Blood Flow rate = 10 180 ml/min
- * UF rate ranges 6 50 L/24 h (> 500 ml/h)
- Requires replacement solution to drive convection
- * No dialysate

CVVH Performance

Continuous venovenous hemofiltration "In vitro" ultrafiltration with blood (post-dilution) (values ± 15%) (Bovine blood at 37° C, Hct 32%, Cp 60g/l)

CVVHDFContinuous Veno-Venous Hemodiafiltration

CVVHDF Continuous VV Hemodiafiltration

- * Primary therapeutic goal:
 - Solute removal by diffusion and convection
 - Management of intravascular volume
- * Blood Flow rate = 10 180ml/min
- * Combines CVVH and CVVHD therapies
- * UF rate ranges 12 24 L/24h (> 500 ml/h)
- * Dialysate Flow rate = 15 45 ml/min (~1 3 L/h)
- * Uses both dialysate (1 L/h) and replacement fluid (500 ml/h)

Pharmacokinetics of Continuous Renal Replacement Therapy

Basic Principles

* Extracorporeal clearance (Cl_{EC}) is usually considered clinically significant only if its contribution to total body clearance exceeds 25 - 30%

$$Fr_{EC} = Cl_{EC} / Cl_{EC} + Cl_{R} + Cl_{NR}$$

- * Not relevant for drugs with high non-renal clearance
- * Only drug not bound to plasma proteins can be removed by extracorporeal procedures

Determinants of Drug Removal by CRRT

* Drug

Same as hemodialysis but increased MW range

* Membrane

Permeability

Sieving Coefficient

* Renal replacement technique

Convection + diffusion CI

Flow rates

Blood, Dialysate, UF

Duration of CRRT

Sieving Coefficient (S)

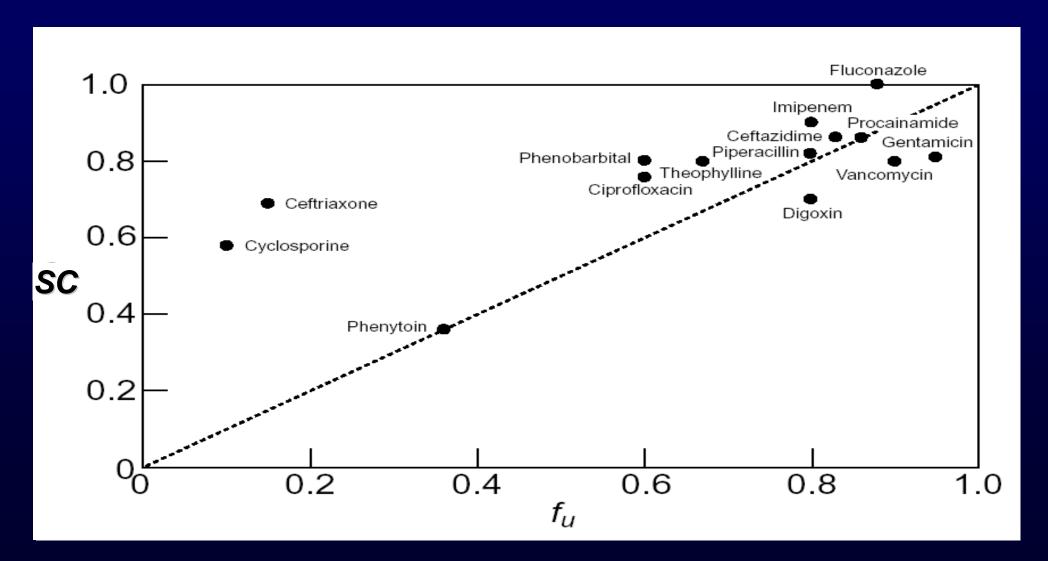
* The capacity of a drug to pass through the hemofilter membrane

$$S = C_{uf} / C_{p}$$

 C_{uf} = drug concentration in the ultrafiltrate

 C_p = drug concentration in the plasma

S = 1 Solute freely passes through the filter


S = 0 Solute does not pass through the filter

$$CL_{HF} = Q_f \times S$$

Determinants of Sieving Coefficient

- * Protein binding
 - Only unbound drug passes through the filter
 - * Protein binding changes in critical illness
- * Drug membrane interactions
 - Not clinically relevant
- * Adsorption of proteins and blood products onto filter
 - Related to filter age
 - Decreased efficiency of filter

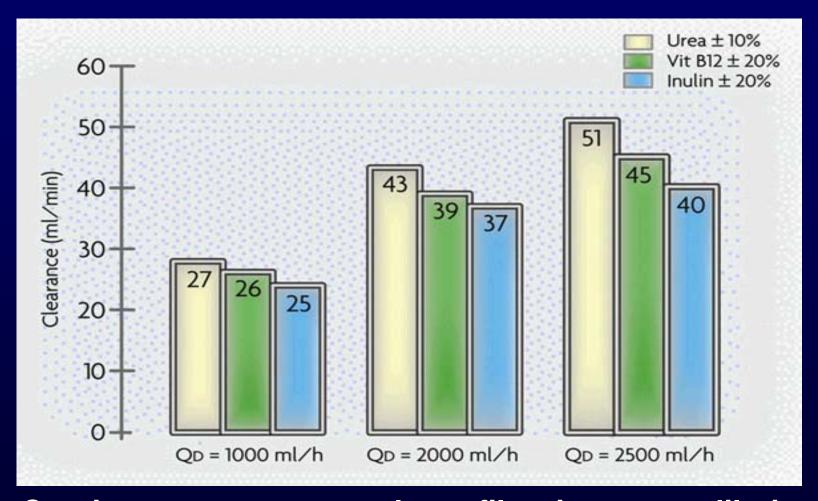
Relationship Between Free Fraction (fu) and Sieving Coefficient (SC)

Dialysate Saturation (S_d)

- * Countercurrent dialysate flow (10 30 ml/min) is always less than blood flow (100 200 ml/min)
- * Allows complete equilibrium between blood serum and dialysate
- * Dialysate leaving filter will be 100% saturated with easily diffusible solutes
- * Diffusive clearance will equal dialysate flow

Dialysate Saturation (S_d)

$$S_d = C_d / C_p$$


C_d = drug concentration in the dialysate

 C_p = drug concentration in the plasma

- Decreasing dialysate saturation
 - Increasing molecular weight
 - * Decreases speed of diffusion
 - Increasing dialysate flow rate
 - * Decreases time available for diffusion

$$CI_{HD} = Q_d \times S_d$$

CVVHDF Clearance

Continuous venovenous hemofiltration - post dilution QB = 150 ml/min - QD = 2000 ml/h (in vitro saline)

Extracorporeal Clearance

- * Hemofiltration clearance ($CI_{HF} = Q_f \times S$)
 - **Q**_f = Ultrafiltration rate
 - **S** = Seiving coefficient
- * Hemodialysis clearance ($Cl_{HD} = Q_d \times S_d$)
 - **Q**_d = Dialysate flow rate
 - S_d = Dialysate saturation
- * Hemodialfiltration clearance

$$CI_{HDF} = (Q_f \times S) + (Q_d \times S_d)$$

Case History

- * AP 36yo HM s/p BMT for aplastic anemia
- * Admitted to ICU for management of acute renal failure
- CVVH-D initiated for management of uremia
- * ICU course complicated by pulmonary failure failure requiring mechanical ventilation, liver failure secondary to GVHD and VOD, and sepsis

Case History Antibiotic Management on CRRT

- * Gentamicin 180 mg IV q24h
- * Vancomycin 1 g IV q24h
- * Dialysis rate 1000 ml/hour
 - 12 hour post gentamicin levels: 3 4 mg/L
 - 12 hour post vancomycin levels: 20 23 mg/L
- * Dialysis rate increased to 1200 ml/hour
 - 12 hour post gentamicin levels: < 0.4 mg/L
 - 12 hour post vancomycin levels: < 4 mg/L

Dosage Adjustments in CRRT

- * Will the drug be removed?
 - Pharmacokinetic parameters
 - * Protein binding < 70 80%
 - Normal values may not apply to critically ill patients
 - * Volume of distribution < 1 L/kg
 - * Renal clearance > 35%
- * How often do I dose the drug?
 - Hemofiltration: 'GFR' 10 20 ml/min
 - Hemofiltration with dialysis: 'GFR' 20 50 ml/min

Drug Removal During CRRT

- * Recommendations not listed in PDR
- * Limited to case reports or series of patients
- * Different filter brands, sizes, flow rates
- * Limited information in many reports
 - Rarely report % of dose removed
- * Many journals will not publish case reports
- * Artificial models and predictions have no clinical value

Dosage Adjustments in CRRT

- * Loading doses
 - Do not need to be adjusted
 - Loading dose depends solely on volume of distribution
- * Maintenance doses
 - Standard reference tables
 - Base on measured loses
 - Calculate maintenance dose multiplication factor (MDMF)

Dosage Adjustments in CRRT

- * Frequent blood level determinations
 - Aminoglycosides, vancomycin
- * Reference tables
 - Bennett's tables or the PDR recommendations require an approximation of patient's GFR
 - The CVVH 'GFR' is approximated by the ultrafiltrate rate (UFR), plus any residual renal clearance
 - Using Bennett's or the PDR's tables, in most CVVH patients, drug dosing can be adjusted for a 'GFR' in the range of 10 to 50 ml/min

Supplemental Dose Based on Measured Plasma Level

Dose
$$_{Suppl} = (C_{target} - C_{measured}) V_{d}$$

Adjusted Dose Based on Clearance Estimates

$$MDMF = \frac{CL_{EC} + CL_{R} + CL_{NR}}{CL_{R} + CL_{NR}}$$

COMPARISON OF DRUG REMOVAL BY INTERMITTENT HD AND CRRT

	$CL_R + CL_{NR}$	MDMF	
DRUG	(mL/min)	INTERMITTENT HEMODIALYSIS	CONTINUOUS RENAL REPLACEMENT
CEFTAZIDIME	11.2	1.6	2.2
CEFTRIAZONE	7.0	1.0	3.4
CIPROFLOXACIN	188	1.0	2.4
THEOPHYLLINE	57.4	1.1	1.4
VANCOMYCIN	6	3.9	4.9